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Abstract
Sea turtles are migratory species with wide geographical distributions, usually spanning multiple countries. This charac-
teristic, along with their complex life cycle, makes sea turtle conservation challenging. In Brazil, continued monitoring 
and recent studies have advanced the knowledge of sea turtle genetic composition and population structure. Some of these 
studies have shown that hybridization is highly frequent in certain regions along the Brazilian coast, despite being relatively 
rare globally. Here, we investigate the hybridization and genetic diversity of sea turtles in nesting and feeding grounds in 
the state of Alagoas, northeastern Brazil, using the control region of mitochondrial DNA and three nuclear loci. We were 
able to identify hybrids between four sea turtle species, but mainly between Caretta caretta and Eretmochelys imbricata 
and C. caretta and Lepidochelys olivacea. Most hybrids were readily identified using morphology and mitochondrial DNA, 
but some were only detected with nuclear DNA. Apart from hybrids, the genetic profile of each species was congruent with 
previous studies in Brazil. However, one stranded E. imbricata had a haplotype (Ei-IP17) and nuclear allele typically found 
in the Indo-Pacific, suggesting long distance migration for this species. Our results indicate that hybridization events might 
be even more geographically spread along the coast of Brazil and provide evidence of the connection between E. imbricata 
from the Atlantic and Indo-Pacific Ocean basins.
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Introduction

Sea turtles are migratory species with complex life cycles. 
Five of the seven sea turtle species have wide distributions 
across different regions of the globe with distinctive habitat 
changes throughout their lifespan (Bolten 2003). This migra-
tory behavior can make conservation planning challenging, 

particularly when sea turtle movement patterns span differ-
ent countries, thereby requiring collaborative conservation 
efforts (Wallace et al. 2010). To address this challenge and 
guide conservation planning at smaller scales, regional man-
agement units (RMUs) have been suggested for sea turtles 
based on distributional and ecological data (Wallace et al. 
2010). Among these RMUs, the Southwest Atlantic Ocean 
(SWA) exhibited considerable threat levels for sea turtle 
populations (Wallace et al. 2011). Nevertheless, recent stud-
ies have reported population recovery at some nesting sites 
in the region, likely due to continuing conservation efforts in 
recent decades (Marcovaldi et al. 2007; Colman et al. 2019).

In Brazil, efforts on sea turtle conservation have 
been historically conducted by TAMAR institute (Mar-
covaldi and Marcovaldi 1999). Additionally, a National 
Action Plan for Sea Turtle Conservation (PAN Tartaru-
gas Marinhas) was established in 2010 and it is currently 
in its second phase (ICMBio 2017). Research priorities 
established by the PAN Tartatrugas Marinhas include 
the identification and monitoring of nesting and feeding 
grounds of the five sea turtle species known to occur along 

Responsible Editor: Christophe Eizaguirre .

Tamí Mott and Robson G. Santos have contributed equally to this 
study.

 *	 João P. F. A. Almeida 
	 jpfa.almeida@gmail.com

1	 Laboratório de Biologia Integrativa, Instituto de Ciências 
Biológicas e da Saúde, Universidade Federal de Alagoas, 
Maceió, AL 57072‑900, Brazil

2	 Laboratório de Biologia Marinha e Conservação, 
Universidade Federal de Alagoas, Maceió, AL 57051‑090, 
Brazil

3	 Instituto Biota de Conservação, Maceió, AL, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s00227-022-04168-y&domain=pdf
http://orcid.org/0000-0002-9196-343X
http://orcid.org/0000-0002-5896-4780
http://orcid.org/0000-0001-5240-6799


	 Marine Biology (2023) 170:14

1 3

14  Page 2 of 12

the Brazilian coast: Caretta caretta (loggerhead turtles), 
Chelonia mydas (green turtles), Dermochelys coriacea 
(leatherback turtles), Eretmochelys imbricata (hawksbill 
turtles) and Lepidochelys olivacea (olive ridley turtles) 
(Marcovaldi et  al. 2007), as well as the evaluation of 
genetic profiles, population dynamics and hybridization 
between these species (ICMBio 2017). Research on sea 
turtle genetic diversity in nesting and feeding grounds in 
Brazil has increased in recent years (Reis et al. 2010b; 
Naro-Maciel et al. 2012; Proietti et al. 2014a; Jordão et al. 
2015). Some studies have reported a high hybridization 
frequency in a few nesting sites in northeastern Brazil 
(Lara-Ruiz et al. 2006; Reis et al. 2010a) however, this 
seems to be rare in sea turtle populations worldwide (Brito 
et al. 2020). In Brazil, hybridization rates can reach up 
to 42% between hawksbills and loggerheads on the coast 
of the state of Bahia (Lara-Ruiz et al. 2006), and 27% 
between loggerheads and olive ridleys on the coast of the 
state of Sergipe (Reis et al. 2010a).

A high hybridization rate in wild populations may lead to 
several evolutionary outcomes, including the enhancement 
of genetic diversity and adaptative divergence (Abbott et al. 
2013). However, it can also compromise small populations 
by limiting their growth rate through the production of invi-
able offspring (Todesco et al. 2016). The consequences of 
these processes in sea turtles are not yet completely under-
stood, but a few studies have observed some differences in 
behavior and reproductive success between hybrids and 
parental species (Proietti et al. 2014b; Soares et al. 2017; 
Arantes et al. 2020a). For instance, while the clutch size of 
loggerhead and hawksbill hybrids has been reported as inter-
mediate, emergence success was lower in hybrids (Soares 
et al. 2017; Arantes et al. 2020a). Likewise, post-emergence 
behavior can also be slightly divergent. Some hybrids, mor-
phologically identified as one parental species, may adopt 
the migration patterns of the other (Proietti et al. 2014b). 
Furthermore, these hybrids are not likely to be completely 
inviable since genetic studies using mitochondrial DNA 
(mtDNA) and nuclear DNA (nDNA) have detected crosses 
between F1 hybrids and parental species (e.g., Vilaça et al. 
2012; Brito et al. 2020; Arantes et al. 2020c).

Factors promoting this high hybridization frequency in 
Brazil require further investigation, but the broad spatial and 
temporal overlapping in sea turtle breeding activities, par-
ticularly in northeastern Brazil, certainly favors hybridiza-
tion (Vilaça et al. 2012). Loggerhead and hawksbill breeding 
activities overlap along the northern coast of Bahia (Fig. 1), 
which is the largest nesting site for both species in the SWA 
(Lara-Ruiz et al. 2006; Marcovaldi et al. 2007). Loggerhead 
nests extend north along the coast of Sergipe State, where 
they now coincide with olive ridley nests and several hybrids 
between the two species have been reported in this area (Reis 
et al. 2010a). Olive ridley nests extend to the southern coast 

of Alagoas State, where loggerhead nests become sparse, 
but still occur.

The coast of Alagoas is an important area for sea tur-
tles, harboring extensive coral reefs that act as feeding and 
development grounds. Currently, five sea turtle species can 
be found in this region: loggerheads, green turtles, hawks-
bills, leatherbacks and olive ridleys; although leatherback 
sightings are rare (Oliveira et al. 2016; Bonfim et al. 2022). 
Olive ridley nests are frequent in the southernmost por-
tion of Alagoas, while nests of the other species are pre-
sent throughout the coast of this state. Green turtle nests are 
rare, but this species uses the coast of Alagoas as a feeding 
ground extensively. Furthermore, satellite tracking studies 
have shown that hawksbills and loggerheads from Bahia, as 
well as olive ridleys from Sergipe nesting sites, usually feed 
in Alagoas or pass through while migrating to northern feed-
ing grounds (Fig. 1A, Marcovaldi et al. 2012).

These conditions may enable interactions among sea 
turtle species in Alagoas, facilitating hybridization, but so 
far only one stranded hybrid (between a hawksbill and log-
gerhead) has been reported in the region (Brito et al. 2020). 
Based on the conditions presented above, our hypothesis is 
that the presence of hybrids in the region is highly possible. 
Therefore, our main goal was to assess hybridization among 
sea turtle species occurring along the coast of Alagoas using 
morphology, mtDNA and nDNA data.

Methods

We used 53 muscle samples collected along the coast of 
Alagoas (Fig. 1B) by the Instituto Biota de Conservação 
between May 2019 and April 2021. Samples were taken 
from stranded turtles, as well as from hatchlings found dead 
after emergence events. Our sampling focused mainly on 
hawksbills and loggerheads as more nest samples were avail-
able for these species, but we also included olive ridley and 
green turtle samples for comparative purposes. Twenty-four 
samples were taken from turtles that were morphologically 
identified as hawksbills (15 hatchlings and nine stranded tur-
tles), 23 from loggerheads (14 hatchlings and nine stranded 
turtles), three from olive ridleys (one hatchling and two 
stranded turtles) and three from green turtles (all stranded 
turtles). The morphology of stranded turtles and hatchlings 
was assessed in the field upon sample collection by staff of 
Instituto Biota de Conservação and hatchling morphology 
was also examined in the laboratory. Species were morpho-
logically identified through the examination of scutes on the 
carapace, inframarginal scutes on the plastron and prefron-
tal scales on the head (Pritchard and Mortimer 1999). Each 
hatchling sample was collected from a different nest.

Total genomic DNA was extracted using the phenol–chlo-
roform method (Sambrook et al. 1989), and a fragment of 
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Fig. 1   Approximate distribution of the main nesting sites and move-
ment pathways of loggerhead, hawksbill and olive ridley turtles 
on the coast of the SWA (A). Solide lines indicate nesting sites and 
dashed lines indicate movement pathways based on sattelite tracking 

studies (Marcovaldi et al. 2010, 2012; Santos et al. 2019; Soares et al. 
2021). Sea turtles sampling along the coast of Alagoas State, SWA 
(B)
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621 base pairs (bp) of the mtDNA control region was recov-
ered through polymerase chain reaction (PCR) using the 
primers LCM15382 and H950 (Abreu-Gobrois et al. 2006). 
To better evaluate putative hybrids we also employed three 
nuclear loci: the oocyte maturation factor mos (CMOS) 
using the primers LIZ-CMOS and HCMOS-III (Kearney 
and Stuart 2004) and two anonymous loci, 3061 and 109472 
using the primers described by Arantes et al. (2020c). We 
chose these nuclear loci because they have been shown to 
present informative variability between loggerhead, hawks-
bill and olive ridley sea turtles (Vilaça et al 2012; Arantes 
et al. 2020c). In addition to the primers we used, for the 
CMOS fragment, we also ran tests with primers developed 
for sea turtles. We ultimately chose these primers because 
they provided higher amplification success. We then aligned 
our CMOS sequences with sequences from GenBank, gener-
ated with primers developed for sea turtles, to make sure the 
fragments overlapped. The CMOS fragment was approxi-
mately 550 bp while 3061 and 109472 were approximately 
320 bp each. While mtDNA was sequenced for all samples, 
nDNA was only amplified for a subset of samples. This 
subset included all hybrids identified through morphology 
and mtDNA (see results) and a few representatives of each 
species (confirmed by morphology and mtDNA) for com-
parative purposes (Online Resource 1). PCR reactions con-
sisted of 20.8 µl of 1XMaster Mix PCR Buffer with 0.4 mM 
of each dNTP and 3 mM of MgCl2, 1.0 µl of each primer 
(10 pmol); 0.2 µl of Taq DNA polymerase (5 U/µl) and 2 
ul of DNA template (10–100 ng/µl). Control region frag-
ments were amplified using the following conditions: initial 
denaturation at 94 °C for 7 min followed by 40 cycles of 
denaturation at 94 °C for 30 s, annealing at 50 °C for 30 s, 
extension at 72 °C for 1 min and a final extension at 72 °C 
for 5 min. Nuclear loci fragments were amplified using the 
same protocol, except for 109472 annealing temperature 
which was 58 °C. Negative controls were included to check 
for contamination. Successfully amplified samples were 
purified with isopropanol and sequenced through Sanger 
sequencing using the forward primer.

All sequences were checked for contamination using the 
BLAST tool in GenBank and for some samples we repeated 
DNA extraction, PCR and sequencing to double check our 
results. We edited the sequences using Bioedit v7.1.3.0 (Hall 
1999) and aligned them with MAFFT v7 using the L-INS-i 
algorithm (Katoh and Standley 2013). Mitochondrial hap-
lotypes were identified using the Archie Carr Center for 
Sea Turtle Research database (https://​accstr.​ufl.​edu/​resou​
rces/​mtdna-​seque​nces/) and nuclear sequences were iden-
tified using the GenBank database (https://​www.​ncbi.​nlm.​
nih.​gov/​genba​nk/). Nuclear alleles were reconstructed using 
the PHASE algorithm implemented in DNAsp v5 (Librado 
and Rozas 2009). For the purposes of this study, we consid-
ered a specimen to be a hybrid when it had the morphology 

of one species and mtDNA or nDNA of a different species. 
Additionally, we used nDNA to perform an assignment 
analysis to determine the most likely association and gen-
eration of hybrids. We performed this analysis using three 
different species pairs: hawksbills and loggerheads, logger-
heads and olive ridleys, and hawksbills and olive ridleys. 
The remaining species were not considered because of their 
small sample size (see results and Online Resource 1). The 
analysis was performed using snapclust as implemented in 
the R package adegenet (Jombart 2008; R Core Team 2021). 
For each analysis, we set the number of expected clusters to 
two (k = 2), indicated the presence of hybrids between each 
species pair (hybrids = TRUE) and specified the hybridiza-
tion coefficient for F1 and first-generation backcross (hybrid.
coef = c(0.5, 0.25)). All other parameters were run as default.

Results

Overall, it was possible to identify all specimens based on 
the morphological characteristics of each species. However, 
some specimens were degraded or exhibited morphologi-
cal characteristics of more than one species (see detailed 
results below). Mitochondrial haplotypes of all 53 samples 
were successfully identified according to the Archie Carr 
Center database, meaning that no new haplotypes were 
found (Online resource 1). Amplification of nDNA was 
less effective than mtDNA, particularly for stranded turtles, 
likely due to the lower abundance of nDNA coupled with 
sample degradation caused by long environmental expo-
sure. Consequently, we were only able to recover one locus 
for most samples (Online Resource 1). In total, we identi-
fied nine hybrids out of 53 samples, three (5.6%) with only 
one source of evidence (weakly supported) and six (11.3%) 
with more than one source of evidence (strongly supported). 
Five hybrids were hatchlings from local nests and four were 
stranded turtles (Table 1). Details on hybridization and over-
all genetic characterization are given below.

Hybridization

We identified four hybrids from nest samples based solely on 
morphology and mtDNA. One sample was a hatchling iden-
tified as a hawksbill (T6R40), which had the CC-A4 haplo-
type, typical of loggerheads. The three remaining hybrids 
(T4R14, T9R1-2019 and MIR1) had loggerhead morphol-
ogy and the haplotype-F, unique to olive ridleys. Specimen 
T9R1-2019 was from an olive ridley nest but exhibited mal-
formations and asymmetry of lateral scute counts, five on 
the right side and seven on the left side (Online resource 2). 
Regarding the nuclear dataset, we successfully recovered 
sequences from the three analyzed loci for all four hybrids. 
The hawksbill x loggerhead hybrid (T6R40) had alleles of 

https://accstr.ufl.edu/resources/mtdna-sequences/
https://accstr.ufl.edu/resources/mtdna-sequences/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
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both species at the 3061 and 109472 loci, but only hawks-
bill alleles at CMOS. One of the three loggerhead x olive 
ridley hybrids (T9R1-2019) only had olive ridley alleles at 
the three nuclear loci. The second (T4R14) only had log-
gerhead alleles at 3061, but alleles of both parental species 
at 109472 and CMOS. The last sample (MIR1) only had 
loggerhead alleles at 3061 and CMOS, and alleles of both 
species at 109472.

Using nDNA, we were also able to identify one more 
hybrid from nests (T9R1-2020), not detected with mtDNA 
or morphology. The new hybrid had hawksbill morphology 
and mtDNA (Ei-BR16) but exhibited an olive ridley allele 
at the 109472 locus while having only hawksbill alleles at 
3061 and CMOS (Table 1). This specimen was classified as 
a hybrid with weak evidence because it had a single olive 
ridley allele, while morphology and all other genetic evi-
dence indicated that it was a hawksbill. Nevertheless, this 
specimen also exhibited dorsal scute malformations (Online 
resource 2). Membership probabilities of nest hybrids indi-
cated that T6R40 was likely an F1 hybrid (46.9%), T4R14 
was likely a loggerhead (41.8%) or a backcross of a F1 
hybrid and a loggerhead (40.4%), MIR1 likely a loggerhead 
(58.1%) and that T9R1-19 was likely an olive ridley (75.6%, 
Fig. 2). Membership probabilities of T9R1-2020 were higher 
for hawksbills (55.8%) and for a backcross between an F1 
hybrid and a hawksbill (35.7%, Fig. 2).

Among stranded turtles, one of the four hybrids was 
identified as a hawksbill (T4T363), but had the loggerhead 
CC-A4 haplotype. The second hybrid had loggerhead mor-
phology, and the CM-A8 haplotype (T5T279), typical of 
green turtles. The third hybrid had green turtle morphology 
and the CC-A4 haplotype (T4T8) from loggerheads. The 
last hybrid (T3T68) was only identified by nDNA. While 
this specimen had hawksbill morphology and mtDNA, it 
presented a loggerhead allele at CMOS. Nuclear data from 
the other hybrids revealed that the hawksbill x loggerhead 

hybrid (T4T363) only had hawksbill alleles at 3061. One 
green turtle x loggerhead hybrid (T5T279) only had logger-
head alleles at both 3061 and CMOS loci, while the other 
sample (T4T8) also only had loggerhead alleles at CMOS 
(Online Resource 1).

Membership probabilities of T3T68 and T4T363 were 
higher for loggerheads (42.5%) and hawksbills (52.9%), 
respectively (Fig. 2). Membership probabilities of green 
turtle x loggerhead hybrids were not estimated due to the 
low recovery of green turtle alleles.

Genetic characterization

Except for the five hybrids, all remaining nest samples 
(n = 25) exhibited haplotypes from their respective species. 
Eleven hatchlings, identified as hawksbills, exhibited the 
Ei-A01 haplotype, one had the Ei-BR16 haplotype and one 
had the Ei-BR10 haplotype, all typical of the species. All 11 
non-hybrid loggerhead hatchlings had the CC-A4 haplotype, 
typical of the species. The single hatchling identified as olive 
ridley had the haplotype-F, which is also unique to this spe-
cies (Online Resource 1). All non-hybrid samples evaluated 
for 3061 (total N = 16), 109472 (total N = 11) and CMOS 
(total N = 6) had alleles compatible with their morphological 
identifications (Online Resource 1).

The eight stranded turtles with hawksbill morphology had 
haplotypes typical of the species: Ei-A01 (4), Ei-BR10 (2), 
Ei-BR16 (1) and Ei-IP17 (1). The latter is commonly found 
in hawksbills from Indo-Pacific nesting sites in the Sey-
chelles Islands and Chagos archipelago. To corroborate the 
identification of this sample, we performed DNA extraction, 
PCR and sequencing a second time and the same haplotype 
was recovered. All eight non-hybrid stranded turtles identi-
fied as loggerheads had the CC-A4 haplotype, characteristic 
of this species. The two turtles identified as olive ridley had 

Table 1   Sea turtle hybrids found on the coast of Alagoas, Brazil between 2019 and 2021

*indicate specimens with malformations. Details on morphology, haplotypes and alleles can be found in Online Resource 1

Field number Type Morphology mtDNA nDNA Hybridi-
zation 
evidenceLateral scutes Inframar-

ginal scutes
Pairs of pre-
frontal scales

Id 3061 109472 CMOS

T9R1/20 Nest 4/6* 4 – Ei Ei Ei Ei/Lo Ei Weak
MIR1 Nest 5 3 2 Cc Lo Cc Cc/Lo Cc Strong
T9R1/19 Nest 5/7* 4 2 Cc Lo Lo Lo Lo Weak
T6R40 Nest 4 4 – Ei Cc Ei/Cc Ei/Cc Ei Strong
T4R14 Nest 5 4 2 Cc Lo Cc Cc/Lo Cc/Lo Strong
T3T68 Stranded turtle 4 4 – Ei Ei – – Ei/Cc Weak
T4T8 Stranded turtle 4 – – Cm Cc – – Cc Strong
T4T363 Stranded turtle 4 4 – Ei Cc Ei – – Strong
T5T279 Stranded turtle 5 3 2 Cc Cm Cc – Cc Strong
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the haplotype-F and the two green turtles had the CM-A8 
haplotype, both unique to each species (Online Resource 1).

Discussion

In this study, we contribute to the current knowledge on sea 
turtle hybridization in the SWA. Here, we found hybrids 
among four sea turtle species: loggerheads, hawksbills, 
green turtles and olive ridleys. We also expanded sampling 
on loggerheads and hawksbills in understudied nesting areas 
in Alagoas and observed that the genetic profile of these 
species is very similar to what is found in other nesting 
sites in the SWA (Lara-Ruiz et al. 2006; Reis et al. 2010b). 
Remarkably, we observed a hawksbill haplotype typical of 
the Indo-Pacific in the Alagoas feeding ground. This is not 
the first time an Indo-Pacific haplotype has been observed in 
the Atlantic, which reinforces the connection between these 
regions (Arantes et al. 2020b). Below we discuss these top-
ics in detail.

Hybridization

Hybrids among sea turtle species have already been reported 
in the SWA (Fig. 3), where loggerhead x hawksbill and log-
gerhead x olive ridley hybrids are particularly more fre-
quent (Lara-Ruiz et al. 2006; Reis et al. 2010a; Proietti et al. 
2014a; Brito et al. 2020). Although the causes for the high 
hybridization frequency between these species are still not 
completely clear, the temporal and spatial overlapping of 
their breeding activities likely facilitates this process (Reis 
et al. 2010a). While breeding activities of these species are 
still understudied in Alagoas, it is possible to find nests of 
these three species along the coast of this state (Oliveira 
et al. 2016), which may facilitate hybridization between 
them. In fact, all hybrids between loggerheads and olive 
ridleys (3) found here were from nests. All of these samples 
had loggerhead morphology and olive ridley mtDNA, the 
same pattern observed in hybrids from Sergipe nesting site 
(Reis et al. 2010a). The two remaining hybrids from Alagoas 
nests had hawksbill morphology. One had loggerhead 
mtDNA (CC-A4, T6R40), the same pattern found in most 
hybrids from Bahia (Lara-Ruiz et al. 2006), and the other 
had an olive ridley allele in the 109472 nuclear locus (T9R1-
2020). Hybridization between hawksbills and olive ridleys 
have been reported in the SWA before, but this appears to 

Fig. 2   Membership probabilities of hawksbill, loggerhead and olive 
ridley specimens and their hybrids as recovered using nuclear loci 
3061, 109472 and CMOS. Probabilities were estimated for three pairs 
of species: hawksbills and loggerheads A olive ridleys and logger-
heads B and hawksbills and olive ridleys C Hybrids are indicated in 
bold

▸
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be much less frequent (Lara-Ruiz et al. 2006; Brito et al. 
2020). Nuclear data from nest samples also revealed that 
these hybrids are likely F1 or backcrosses with parental spe-
cies (Fig. 2), which indicates that hybridization may be an 
ongoing process in the region.

Among the stranded turtle hybrids, two had hawks-
bill morphology. One specimen had loggerhead mtDNA 
(T4T363) while the other (T3T68) had loggerhead nDNA 
that matched an Indo-Pacific loggerhead allele (as did its 
hawksbill mtDNA). The only other hybrid previously 
reported from Alagoas was a hybrid between these species, 
a stranded turtle with hawksbill morphology and loggerhead 
mtDNA (CC-A4) (Brito et al. 2020). However, both spe-
cies use the Alagoas coastline as both feeding and repro-
ductive grounds, thus it is difficult to determine how these 
stranded specimens were using this area. It is plausible that 
the T4T363 specimen could have originated from the Bahia 
nesting site, since a particularly high frequency of hawks-
bill x loggerhead hybrids have been reported there (Lara-
Ruiz et al. 2006) and individuals from this nesting site are 
also reported to migrate through Alagoas (Marcovaldi et al. 
2012). On the other hand, the loggerhead Indo-Pacific allele 
we found in the T3T68 specimen, seems to reinforce that this 

specimen was indeed from that region (see detailed discus-
sion below).

The remaining stranded hybrids (2) identified through 
mtDNA were crosses between green and loggerhead tur-
tles. Hybrids between these species are less common in the 
SWA, probably due to the low overlapping in their nest-
ing activities. While loggerhead nests are mainly found on 
the Brazilian mainland coast, green turtle nests are mostly 
concentrated on oceanic islands, such as Rocas Atoll and 
Trindade, and are sparse on continental areas within the 
SWA (Marcovaldi and Marcovaldi 1999; Marcovaldi and 
Chaloupka 2007). Nevertheless, some green turtle nests can 
be found along the Brazilian coast, mainly in the northern 
region of Bahia, the main nesting site for loggerheads in 
Brazil (Lara-Ruiz et al. 2006). So, it is plausible that this 
region is the probable origin of these hybrids.

Understanding the role hybrids play in sea turtle popu-
lation structure is particularly important given their sta-
tus as threatened species (IUCN 2022), especially when 
we take climate change effects into consideration. Many 
sea turtle populations are already reported to have strong 
female bias (Hays et al. 2014; Jensen et al. 2018), which 
tends to be even more exacerbated with the predicted 

Fig. 3   Known reports of sea 
turtle hybrids in the Southwest 
Atlantic Ocean. ARG​ Argentina, 
URU​ Uruguay, Brazilian States: 
AL Alagoas, BA Bahia, ABR 
Abrolhos Archipelago, Bahia, 
CE Ceará, RS Rio Grande do 
Sul, SE Sergipe. Source of 
hybrid records: Arantes et al. 
(2020a): ABR, Brito et al. 
(2020): AL, BA, CE, ES, RS, 
URU; Karl et al. (1995): BA; 
Lara-Ruiz et al. (2006): BA; 
Proietti et al. (2014b): CE, RS; 
Prosdocimi et al. (2014): ARG; 
Reis et al. (2010a): SE; This 
study: AL
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rise of global temperatures (IPCC 2021). Higher nesting 
beach temperatures could not only promote higher female 
output, and consequently higher female proportions in 
natural populations, but also increase hatchling mortality 
(Hays et al. 2017). Furthermore, the decrease in beaches 
available for nesting due to sea level rise and coastal 
urbanization can potentially cause shifts in habitat use 
(Fuentes et al. 2010, 2011), which can promote further 
overlapping of breeding and nesting activities of these 
species. If these environmental and anthropogenic factors 
act synergistically, we may likely observe an increase in 
hybridization frequency over time. Thus, the continuous 
monitoring of ecological and genetic aspects of these 
populations is fundamental.

The use of a multilocus approach to investigate hybrid-
ization in these populations has been shown to be essen-
tial for improving our understanding of the hybridization 
process (Vilaça et al. 2012; Brito et al. 2020; Arantes 
et al. 2020c). Here, we were only able to use three nDNA 
loci, which precludes us from reaching more conclusive 
results, particularly on hybrid generation. The lower suc-
cess rate in the amplification of these loci in stranded 
specimens, likely due to sample deterioration, also limited 
our interpretation of these data. The use of nonspecific 
primers for the CMOS gene also warrants caution in the 
interpretation of these data. However, all but one allele 
observed in this locus have been identified before using 
sea turtle primers. Only one hybrid was defined by CMOS 
data, all other hybrids can be identified using mtDNA or 
the other two nDNA loci (Table 1, Online Resource 1). 
Despite these limitations, the inclusion of nDNA allowed 
us to identify hybrids that would otherwise not have been 
observed solely using mtDNA and morphology. Never-
theless, as suggested by previous studies, a better com-
prehension of hybrid ecology is required to understand 
how this high hybridization frequency along the Brazilian 
coast can affect population dynamics (Vilaça et al. 2012; 
Arantes et al. 2020c).

Studies on the spatial distribution of nesting and 
feeding grounds, as well as genetic diversity are ini-
tial in Alagoas. Consequently, information on breed-
ing periodicity, sex ratios and comprehensive genetic 
characterizations are still unavailable. Nevertheless, sex 
ratio studies on loggerhead and hawksbill nesting on the 
Brazilian coast indicate high female bias (Marcovaldi 
et al. 1997; Godfrey et al. 1999), thus it is likely that 
future studies will reveal a similar pattern for Alagoas. 
Therefore, constant monitoring of this population, 
regarding shifts in habitat use and population param-
eters, is extremely important to better understand the 
consequences of hybridization and thereby, improve 
conservation actions.

Genetic characterization

The genetic diversity of hawksbill and loggerhead nests in 
the study area was similar to other reproductive areas in 
the SWA. The CC-A4 haplotype, observed in all non-hybrid 
loggerhead nests (11), is widely found in loggerhead nesting 
sites in Brazil (Reis et al. 2010b). Likewise, among the three 
haplotypes we identified in non-hybrid hawksbill nests (14), 
the Ei-A01 is widely distributed throughout feeding grounds 
in the SWA and in the two major hawksbill nesting sites in 
Brazil: Bahia and Rio Grande do Norte (Proietti et al. 2014a; 
Simões et al. 2021). The two other haplotypes, Ei-BR16 
and Ei-BR10, are both exclusive to Brazilian nesting sites 
(Lara-Ruiz et al. 2006). Additionally, the single olive ridley 
nest sample had the haplotype-F, which is the only haplo-
type observed for olive ridleys in the SWA to date (Bowen 
et al. 1997).

We observed that all stranded loggerheads (9) had the 
same CC-A4 haplotype found in the nests. As mentioned 
above, this haplotype is the most commonly observed in 
loggerhead nesting and feeding sites in Brazil and is also 
exclusive to this region (Reis et al. 2010b). This low haplo-
type diversity is also in accordance with previous studies and 
the presence of this exclusive Brazilian haplotype reinforces 
that the specimens analyzed here likely originated from Bra-
zilian nesting sites (Reis et al. 2010b). We observed a simi-
lar genetic profile in stranded hawksbills with haplotypes 
commonly found in Brazilian nesting sites: Ei-BR10 (2), 
Ei-BR16 (1) and Ei-A01 (1) (Lara-Ruiz et al. 2006; Proietti 
et al. 2014a; Simões et al. 2021). Finally, the presence of 
the Ei-IP17 haplotype was surprising since this haplotype is 
only found in Indo-Pacific nesting sites (Vargas et al. 2016), 
implications of which are discussed below.

In general, the genetic profile we observed for both spe-
cies suggests that feeding grounds are mostly occupied by 
individuals from local nesting sites. Satellite tracking studies 
also suggest that the study area is within a migratory cor-
ridor for loggerheads and hawksbills migrating from their 
main nesting area in Bahia to feeding grounds farther north, 
but it is also is the final destination for some of these indi-
viduals (Marcovaldi et al. 2010, 2012).

The occurrence of the Ei-IP17 haplotype among our 
stranded samples was a surprising and novel result, since 
this haplotype is typical for Indo-Pacific nesting sites in the 
Seychelles Islands and Chagos Archipelago (Vargas et al. 
2016), suggesting a connection between the Atlantic and 
Indo-Pacific Oceans. To our knowledge, this is the first time 
the Ei-IP17 haplotype has been reported in an Atlantic feed-
ing ground. Two other Indo-Pacific haplotypes, Ei-IP16 and 
EI-IP33, have been previously reported in feeding grounds 
in Fernando de Noronha and Ascension Island (Fig.  4, 
Arantes et al. 2020b). Additionally, three orphan haplotypes 
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(Ei-A49, Ei-A70 and Ei-A75) observed in the Atlantic feed-
ing grounds of Ascension Island, Fernando de Noronha, 
Cape Verde and Principe Island, group together with haplo-
types from the Indo-Pacific (Arantes et al. 2020b). The same 
occurs with the EATL haplotype observed in the Principe 
Island nesting site in Africa (Monzón-Argüello et al. 2011; 
Arantes et al. 2020b).

Haplotype sharing between Atlantic and Indo-Pacific 
Oceans can also be seen in loggerhead, green and leath-
erback turtles (Dutton et al. 1999; Bourjea et al. 2007; 
Shamblin et  al. 2014), and migrations in both direc-
tions through southern Africa have been suggested. For 
instance, the CM-A8 haplotype, widely found in green 
turtle nesting sites in the Atlantic, can also be found in 
the Mozambique nesting site (Bourjea et al. 2007), a sim-
ilar pattern to that of the loggerhead CC-A2 haplotype 
(Shamblin et al. 2014). Loggerhead haplotypes from the 
Indo-Pacific have also been observed in the Atlantic, sug-
gesting that westward migrations may also occur (Sham-
blin et al. 2014). Colonization of the Atlantic by olive 
ridleys is suggested to have occurred through southern 
Africa (Bowen et al. 1997). Likewise, haplotype sharing 
between hawksbill nesting sites in Principe Island and in 

the Indo-Pacific led Monzón-Argüello et al. (2011) to sug-
gest the colonization of this east African nesting site by 
hawksbill migrants from the Indo-Pacific. Thus, although 
it seems plausible that the Ei-IP17 haplotype found here 
could have originated directly from the Indo-Pacific, we 
cannot disregard putative unsampled nesting sites in east 
Africa as a possible origin, since hawksbill haplotypes 
from such sites have already been found in SWA feeding 
grounds (Proietti et al. 2014a).

The hawksbill sample analyzed here was from a juve-
nile male (curved carapace length of 42.1 cm), which 
could indicate an occasional incursion. We also observed 
Indo-Pacific alleles in the CMOS locus of seven additional 
hawksbill, loggerhead and olive ridley samples (Online 
Resource 1). Due to the generally slower evolutionary rates 
of nuclear genes, these alleles may have persisted at low 
frequencies in Atlantic sea turtle populations after their 
separation from Indo-Pacific lineages. On the other hand, 
this may evidence that at least some gene flow between 
Atlantic and Indo-Pacific sea turtles still exists. Neverthe-
less, wider sampling of feeding and nesting grounds in the 
Atlantic is required to help elucidate hawksbill and other 
sea turtle population structure and migration pathways.

Fig. 4   Known occurrences of hawksbill Indo-Pacific haplotypes in south Atlantic feeding and nesting sites. Star denotes the study site in the 
state of Alagoas, northeastern Brazil
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Concluding remarks

Although relatively rare in sea turtles, hybridization 
seem to be very common in Brazilian nesting and feed-
ing grounds (Lara-Ruiz et  al. 2006; Brito et  al. 2020, 
our study). Although our total sample size was relatively 
small, we were still able to detect hybrids in Alagoas nests, 
as well as in stranded animals (11.3% of our total sam-
pling), including putative crosses between hybrids and 
parental species. This suggests that hybridization events 
may be common in the region, as seen in other sites in the 
SWA, such as Sergipe and Bahia (Lara-Ruiz et al. 2006; 
Reis et al. 2010a). Most hybrids were readily identified 
using only morphology and mtDNA, however the use of 
nuclear data revealed new hybrids that would otherwise 
remain unidentified, which highlights the importance of 
using an integrative approach when studying hybridization 
(Vilaça et al. 2012; Brito et al. 2020).

The use of mtDNA and nDNA also revealed a possible 
connection between feeding grounds in the study area and 
nesting sites in the Indo-Pacific. Understanding these con-
nections and migratory pathways is essential to the devel-
opment of appropriate conservation strategies and is one 
of the main priorities in sea turtle research (Hamann et al. 
2010). Although a more comprehensive research effort is 
required to clarify the connections between sea turtles in 
the Atlantic and Indo-Pacific, our findings represent the 
fifth hawksbill locality in the South Atlantic with Indo-
Pacific haplotypes (Arantes et al. 2020b), reinforcing the 
connection between these regions.
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